

ACKNOWLEDGMENTS

One of us (R. B. W.) wishes to express his appre-

ciation to Walter B. Hewlett and Michael J. Y. Williams for their generous assistance with the numerical computations presented in this paper.

*Work supported by the Advanced Research Projects Agency through the Center for Materials Research at Stanford University, Stanford, Calif. 94305.

[†]National Science Foundation Predoctoral Fellow.

[‡]T. Wolfram and J. Callaway, Phys. Rev. 127, 1605 (1962).

[§]C. Haas, Phys. Rev. 168, 531 (1968).

[¶]F. Rys, J. Helman, and W. Baltensperger, Physik Kondensierten Materie 6, 105 (1967).

[¶]R. M. White, Phys. Rev. Letters 23, 858 (1969).

[¶]R. M. White and R. B. Woolsey, Phys. Rev. 176, 908 (1968).

[¶]S. V. Vonsovskii and Y. A. Izyumov, Usp. Fiz. Nauk 78, 3 (1962) [Soviet Phys. Usp. 5, 723 (1963)].

[¶]H. S. D. Cole and R. E. Turner, Phys. Rev. Letters 19, 501 (1967).

[¶]See, for example, D. Pines, in *Polarons and Excit-*

tons, edited by C. G. Kuper and G. D. Whitfield (Oliver and Boyd, London, 1963).

[¶]S. Methfessel and D. C. Mattis, in *Handbuch der Physik*, edited by S. Flügge (Springer, Berlin, 1968), Vol. 18/1, p. 484.

[¶]B. Giovannini, M. Peter, and S. Koide, Phys. Rev. 149, 251 (1966).

[¶]R. B. Woolsey, Ph.D. dissertation, Stanford University, Stanford, Calif., 1970 (unpublished).

[¶]H. S. D. Cole, Phys. Letters 30A, 114 (1969).

[¶]P. N. Butcher, Rept. Progr. Phys. 30, 97 (1967).

[¶]A. A. Abrikosov, L. P. Gor'kov, and I. Y. Dzyaloshinskii, in *Quantum Field Theoretical Methods in Statistical Physics*, edited by D. ter Harr (Pergamon, New York, 1965), p. 188.

COMMENTS AND ADDENDA

The *Comments and Addenda* section is for short communications which are not of such urgency as to justify publication in *Physical Review Letters* and are not appropriate for regular *Articles*. It includes only the following types of communications: (1) comments on papers previously published in *The Physical Review* or *Physical Review Letters*; (2) addenda to papers previously published in *The Physical Review* or *Physical Review Letters*, in which the additional information can be presented without the need for writing a complete article. Manuscripts intended for this section may be accompanied by a brief abstract for information-retrieval purposes. Accepted manuscripts will follow the same publication schedule as articles in this journal, and galley proofs will be sent to authors.

Composite Ising Lattices with Unequal Spins*

Robert H. T. Yeh

Department of Physics and Astronomy, State University of New York, Buffalo, New York 14214
(Received 30 January 1970)

The phase-transition problem of two-component composite Ising lattices with unequal spins in zero magnetic field is solved within the Bragg-Williams approximation.

We shall generalize our previous treatment of composite Ising lattices¹ to the case where spins of different components of the composite may have different magnitudes. We shall restrict ourselves to the two-component case with zero external field, although the method can easily be generalized to three or more components cases. Unless other-

wise specified, we shall follow the notations of I.

Consider a two-component lattice with interaction constants $\epsilon_1, \epsilon_2, \epsilon_3$; structure parameters u_1, u_2, u_3, v_1, v_2 ; and spin magnitudes s_1, s_2 . With zero external field, the partition function of this lattice is equal to the partition function of a lattice with same structure, but different interaction

constants ϵ'_1 , ϵ'_2 , ϵ'_3 and spin magnitudes $s'_1 = s'_2 = 1$, and

$$\epsilon'_1 = \epsilon_1 s_1^2, \quad \epsilon'_2 = \epsilon_2 s_2^2, \quad \epsilon'_3 = \epsilon_3 s_1 s_2. \quad (1)$$

So with this transformation and the results of I, we can easily write down the equations for composite Ising lattices with unequal spins. The magnetization per site is given by

$$M/N = 2v_1 s_1 L_1 + 2v_2 s_2 L_2, \quad (2)$$

$$\text{with } 2L_1 = \tanh \left[4\beta\gamma\epsilon'_1 L_1 \left(\frac{u_1}{v_1} \right) + 2\beta\gamma\epsilon'_3 L_2 \left(\frac{u_3}{v_1} \right) \right], \quad (3)$$

$$2L_2 = \tanh \left[4\beta\gamma\epsilon'_2 L_2 \left(\frac{u_2}{v_2} \right) + 2\beta\gamma\epsilon'_3 L_1 \left(\frac{u_3}{v_2} \right) \right].$$

A concrete example is given in Fig. 1, with $v_1 = v_2 = \frac{1}{2}$, $u_1 = u_2 = \frac{1}{2}$, $u_3 = \frac{1}{8}$, $k_B T_{c1} = \gamma\epsilon_1$; the solid line represents the solution of Eq. (2) for $s_1 = 1$, $s_2 = 2$, $\epsilon_2 = \frac{1}{8}\epsilon_1$, and $\epsilon_3 = (\epsilon_1\epsilon_2)^{1/2}$. The dashed lines represent magnetization curves of corresponding single-component systems. As conjectured in I, we see that the composite system has a higher value of M/N in the temperature range $0.42 < T/T_{c1} < 0.63$.

On the experimental side, there is no evidence of definite correlation between coupling strength and spin magnitude in ferromagnetic insulators,² hence the above phenomena are not entirely unrealistic, although this is by no means an easy experiment.³

For two-component systems, one can easily establish that $2u_1 + u_3 = v_1$ (or equivalently $2u_2 + u_3 = v_2$). As a special case, this implies that if $v_1 = v_2$, then $u_1 = u_2$ and vice versa. This is, in general, not true for lattices with more than two components. As a counter example, consider a unit cell of three components $A B B C A C$. Here $v_1 = v_2 = v_3$, but u 's are not identical.

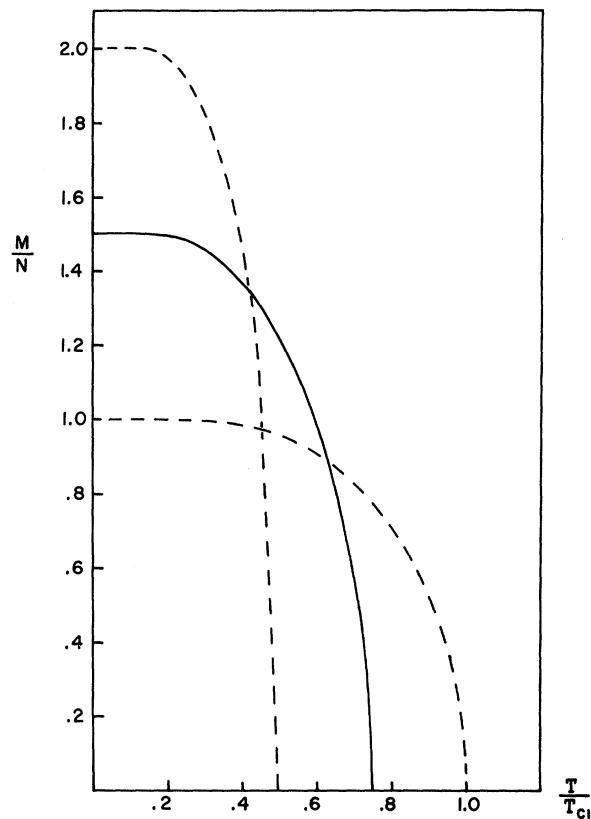


FIG. 1. Magnetization curves of composite Ising lattice with unequal spins. $v_1 = v_2 = \frac{1}{2}$, $u_1 = u_2 = \frac{1}{2}u_3 = \frac{1}{8}$, $k_B T_{c1} = \gamma\epsilon_1$. Solid line represents the case of $s_1 = 1$, $s_2 = 2$, $\epsilon_2 = \frac{1}{8}\epsilon_1$, and $\epsilon_3 = (\epsilon_1\epsilon_2)^{1/2}$. The dashed lines represent magnetization curves of corresponding single-component systems.

*Work supported by a faculty research fellowship from the Research Foundation of State University of New York.

¹R. H. T. Yeh, Phys. Rev. B 1, 1180 (1970). We shall refer to this paper as I.

²For example, CrO_2 has $T_c = 400^\circ\text{K}$ and $2\mu_B$ (Bohr mag-

neton) per Cr^{4+} ion for saturation magnetization. CrBr_3 has $T_c = 37^\circ\text{K}$ and $3\mu_B$ per Cr^{3+} ion for saturation magnetization. For a summary of experimental results, see *Magnetism III*, edited by G. T. Rado and H. Suhl (Academic, New York, 1963), Chap. 2.

³R. H. T. Yeh, Phys. Status Solidi 30, K45 (1968).